Development of a radioimmunoassay for the soybean phytoalexin glyceollin I.

نویسندگان

  • P Moesta
  • M G Hahn
  • H Grisebach
چکیده

A radioimmunoassay for glyceollin I, the major phytoalexin produced by soybean (Glycine max [L.] Merr.), has been developed. Antibodies were raised in rabbits against a glyceollin I-bovine serum albumin conjugate. The antisera were used to establish a radioimmunoassay for glyceollin I using [(125)I]glyceollin I as the tracer. A logit plot of a standard concentration series yielded a straight line in the range of 1 to 100 picomoles (0.34-34 nanograms) of glyceollin I. The structurally related pterocarpan phytoalexins, glyceollins II and III, glyceollidin II and glycinol, which also accumulate in infected soybean tissue, show a low cross-reactivity in the radioimmunoassay (0.5-5% at 50% displacement of the tracer). Two related isoflavones present constitutively in soybean tissue, daidzein and genistein, have cross-reactivities of less than 0.84% and 1.1%, respectively. The radioimmunoassay permitted the quantitative determination of glyceollin I in 15-micrometer microtome sections of soybean hypocotyl tissue infected with zoospores of Phytophthora megasperma f. sp. glycinea.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinct Mechanisms of Biotic and Chemical Elicitors Enable Additive Elicitation of the Anticancer Phytoalexin Glyceollin I.

Phytoalexins are metabolites biosynthesized in plants in response to pathogen, environmental, and chemical stresses that often have potent bioactivities, rendering them promising for use as therapeutics or scaffolds for pharmaceutical development. Glyceollin I is an isoflavonoid phytoalexin from soybean that exhibits potent anticancer activities and is not economical to synthesize. Here, we tes...

متن کامل

Hormesis of glyceollin I, an induced phytoalexin from soybean, on budding yeast chronological lifespan extension.

Glyceollin I, an induced phytoalexin isolated from soybean, has been reported to have various bioactivities, including anti-bacterial, anti-nematode, anti-fungal, anti-estrogenic and anti-cancer, anti-oxidant, anti-inflammatory, insulin sensitivity enhancing, and attenuation of vascular contractions. Here we show that glyceollin I has hormesis and extends yeast life span at low (nM) doses in a ...

متن کامل

Isoflavonoid-inducible resistance to the phytoalexin glyceollin in soybean rhizobia.

The antibacterial effect of the soybean phytoalexin glyceollin was assayed using a liquid microculture technique. Log-phase cells of Bradyrhizobium japonicum and Sinorhizobium fredii were sensitive to glyceollin. As revealed by growth rates and survival tests, these species were able to tolerate glyceollin after adaptation. Incubation in low concentrations of the isoflavones genistein and daidz...

متن کامل

Bradyrhizobium japonicum mutants defective in cyclic beta-glucan synthesis show enhanced sensitivity to plant defense responses.

Susceptibility of the nitrogen-fixing soybean symbiont Bradyrhizobium japonicum to inducible plant defense metabolites such as phytoalexin and H2O2, was investigated. On the wild-type strain USDA 110 the soybean phytoalexin, glyceollin, showed bacteriostatic activity. Viable bacteria isolated from intact nodules were adapted to glyceollin. H2O2 in physiological concentrations did not affect wil...

متن کامل

Ethylene: indicator but not inducer of phytoalexin synthesis in soybean.

Cell wall preparations (elicitors) from Phytophthora megasperma var. sojae increase C(2)H(4) formation, phenylalanine ammonia lyase activity, and glyceollin accumulation in soybean cotyledons within about 1.5, 3, and 6 hours after treatment, respectively. The immediate precursor of C(2)H(4), 1-aminocyclopropane-1-carboxylic acid, stimulates C(2)H(4) formation like the elicitor within 1.5 hours ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 73 2  شماره 

صفحات  -

تاریخ انتشار 1983